Dataset title: Seaglider Pacific Missions 0037 & 0038 – Upper-Ocean Heat Content and (Sub)Mesoscale Diagnostics Associated manuscript: "High-Resolution Observations Unveil (Sub)Mesoscale Heat Fluxes Shaping Upper-Ocean Heat Content" Submitted to Geophysical Research Letters (GRL). Authors: Mathieu Gentil (1,2,3), Charly de Marez (4,5), Enric Pallas-Sanz (2), Anthony Bosse (1), Miguel Tenreiro (2), Rémi Laxenaire (6) Affiliations: (1) Aix-Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France (2) Center for Scientific Research and Higher Education at Ensenada (CICESE), Ensenada, Mexico (3) Now at Université de Toulouse, LEGOS (IRD/UT3/CNES/CNRS), Toulouse, France (4) Institute of Earth Sciences, University of Iceland, 102 Reykjavik, Iceland (5) Univ Brest, CNRS, IRD, Ifremer, Laboratoire d’Océanographie Physique et Spatiale, Plouzané, France (6) LACY, Laboratoire de l’Atmosphère et des Cyclones (UMR 8105 CNRS, Université de La Réunion, Météo-France), Saint-Denis de La Réunion, France Dataset creator: Mathieu Gentil (MIO/CICESE/LEGOS) ----------------------------------------------------------------------- 1. Overview ----------------------------------------------------------------------- This repository contains the processed Seaglider observations used to produce all results and diagnostics presented in the associated GRL manuscript. The dataset consists of two missions (0037 and 0038) carried out in the Eastern Tropical Pacific in 2024. Data are divided into glider sections and interpolated on a regular 2D grid defined by depth and along-track distance x. These files provide all variables required to reproduce: - hydrographic sections (T, S, CT, SA, density) - buoyancy gradients and frontal diagnostics - quasi-geostrophic vertical velocity (wQG) - vertical heat flux components (entrainment (VHT), diapycnal, submesoscale, Ekman, MLE) - upper-ocean heat content (glider and NOAA) - collocated AVISO and SWOT surface currents - ERA5 surface heat fluxes interpolated onto the glider track ----------------------------------------------------------------------- 2. File Structure ----------------------------------------------------------------------- Two NetCDF files are provided: Seaglider_Pacific_OHC_mission37_2024.nc Seaglider_Pacific_OHC_mission38_2024.nc Dimensions: - section : glider leg index - depth : vertical coordinate (m) - x : along-track distance (km) Coordinates: - lon, lat : geolocation - time : UTC time per gridpoint - depth, x : vertical and horizontal axes ----------------------------------------------------------------------- 3. Variables Included ----------------------------------------------------------------------- Hydrography: temperature, salinity, CT, SA, density, density_noinv, sigma0, b, N2, dbdx, dbdz, alpha, bxmd Dynamics (glider / AVISO / SWOT): u_aviso, v_aviso, sla_aviso u_swot, v_swot, sla_swot vgeo_abs wQG VHT Reference-frame geometry: theta, sintheta, dir_x, dir_y Heat content: ohc_26, iso26 ohc_NOAA, iso20_NOAA, iso26_NOAA MLD Surface heat fluxes (ERA5): slhf, sshf, ssr, str, Qnet Diapycnal and turbulent fluxes: epsilon, Kz, dTdz, Qdiapycnal Submesoscale fluxes: QEBF, QMLE, QSMS ----------------------------------------------------------------------- 4. Loading the dataset in Python ----------------------------------------------------------------------- import xarray as xr ds = xr.open_dataset("Seaglider_Pacific_OHC_mission37_2024.nc") print(ds) Example plot: ds["temperature"].isel(section=0).plot(x="x", y="depth", yincrease=False) ----------------------------------------------------------------------- 5. Notes for reproducibility ----------------------------------------------------------------------- - All variables follow the methodology described in the GRL manuscript. - These are analysis-ready products designed for results reproduction. - AVISO and SWOT inputs follow standard CMEMS/NASA access procedures. - ERA5 heat fluxes are interpolated in (lon, lat, time) onto the glider track. ----------------------------------------------------------------------- 6. Contact ----------------------------------------------------------------------- For any question regarding this dataset: Mathieu Gentil MIO/CICESE/LEGOS) Email: mathieu.gentil@utoulouse.fr